Module trainlog.logs

Friendly APIs for preprocessing log files.

Note that it's simple to handle log files directly, using io.read_jsonlines. This API adds a few tools for dealing with heterogenous event streams, before handing them off to a tabular data processing library such as pandas.

For example, we might write the following to generate data that's easy to work with in pandas:

import trainlog.ops as O

logs = trainlog.logs.glob("results/*.jsonl.gz")

logs = logs.apply(
    O.header("learning_rate"),
    O.count_if("step"),
    O.when("valid", O.window("step", 100, O.reduce_mean("loss"), "train_loss")),
)

df = logs["valid"].to_pandas()
Expand source code
"""Friendly APIs for preprocessing log files.

Note that it's simple to handle log files directly, using `io.read_jsonlines`.
This API adds a few tools for dealing with heterogenous event streams, before
handing them off to a tabular data processing library such as pandas.

For example, we might write the following to generate data that's easy to work
with in pandas:

    import trainlog.ops as O

    logs = trainlog.logs.glob("results/*.jsonl.gz")

    logs = logs.apply(
        O.header("learning_rate"),
        O.count_if("step"),
        O.when("valid", O.window("step", 100, O.reduce_mean("loss"), "train_loss")),
    )

    df = logs["valid"].to_pandas()
"""

from __future__ import annotations

import datetime
import glob as pyglob
import os
import typing
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Optional,
    Sequence,
    Set,
    Tuple,
    Union,
)

from . import io, ops
from .ops import Event


class JsonLinesFile:
    """An event stream that is lazily read from a JSONlines file.

    Note that if the first event in the file has {"kind": "header"}, this class
    automatically adds a key {"metadata": {"path": ..., "created": ...,
    "modified": ...}}.
    """

    def __init__(self, path: str, load_args: Optional[Dict[str, Any]] = None):
        self.path = path
        self.load_args = load_args

    def __repr__(self) -> str:
        return f"{type(self).__name__}({self.path!r})"

    def __iter__(self) -> Iterator[Event]:
        iterator: Iterator[Event] = iter(io.read_jsonlines(self.path, self.load_args))
        try:
            first_event = next(iterator)
            if first_event.get("kind") == "header":
                first_event["metadata"] = self.metadata
            yield first_event
            yield from iterator
        except StopIteration:
            pass

    @property
    def metadata(self) -> Dict[str, Any]:
        """A dictionary of metadata about the file loaded."""
        return dict(
            path=self.path,
            created=datetime.datetime.fromtimestamp(
                os.path.getctime(self.path)
            ).isoformat(),
            modified=datetime.datetime.fromtimestamp(
                os.path.getmtime(self.path)
            ).isoformat(),
        )


def _events_repr(events: Iterable[Event]) -> str:
    """A string summary for tuples or lists that doesn't print all the contents."""
    if isinstance(events, (tuple, list)):
        return f"[{len(events)}]"
    return repr(events)


class Transform:
    """An event stream produced by transforming another stream.

    If we compare two alternatives:

        operation(events)
        Transform(events, operation)

    The main difference is that the second can be iterated multiple times (as long
    as `events` can.)
    """

    def __init__(self, events: Iterable[Event], operation: ops.BaseOperation):
        self.events = events
        self.operation = operation

    def __repr__(self) -> str:
        return f"{type(self).__name__}({_events_repr(self.events)}, {self.operation!r})"

    def __iter__(self) -> Iterator[Event]:
        return self.operation(iter(self.events))


def get_header(events: Iterable[Event]) -> Optional[Event]:
    """Extract the header from the event stream.

    The header must be the first event, and have {"kind": "header"}.
    """
    first = next(iter(events), None)
    if first is None:
        return None
    if first.get("kind") != "header":
        return None
    return first


def list_to_array(column: Sequence[Any]) -> Any:
    """Convert a list to a numpy array, with a slight tweak to np.asarray.

    The differences between this & np.asarray is the handling of None, and
    the ability to output multidimensional arrays.

        list_to_array([1, None]) == np.array([1.0, np.nan])

        list_to_array([[1], [2]]) \
            == np.array([np.array([1]), np.array([2])], dtype=np.object)
    """
    import numpy as np  # type: ignore  # pylint: disable=import-outside-toplevel

    types = {type(value) for value in column}

    if {np.ndarray, tuple, list} & types:
        # Deep structure - this could be a pain, so handle it separately.
        # We don't want to generate ND structures anyway, as pandas won't
        # handle these
        objarray = np.full(len(column), None)
        objarray[:] = column
        return objarray

    # Use dtype=np.float to convert None to np.nan as long as all types are
    # numeric
    dtype = None
    if type(None) in types and all(
        t is type(None) or np.dtype(t).kind in "biuf" for t in types  # noqa: E721
    ):
        dtype = np.float

    return np.asarray(column, dtype=dtype)


class Columns:
    """A set of named columns, stored as arrays (requires numpy)."""

    def __init__(
        self, columns: Dict[str, Any], column_order: Optional[Tuple[str, ...]]
    ):
        self.columns = columns
        self.column_order = column_order
        for name, column in columns.items():
            attrname = f"{name}_" if hasattr(self, name) else name
            setattr(self, attrname, column)

    def __repr__(self) -> str:
        if self.column_order is not None:
            return f"{type(self).__name__}{self.column_order!r}"
        return f"{type(self).__name__}{tuple(self.columns)!r}"

    def __getitem__(self, key_or_index: Union[str, int]) -> Any:
        if isinstance(key_or_index, str):
            return self.columns[key_or_index]
        if self.column_order is None:
            raise ValueError(
                "Cannot use Columns as an indexable sequence unless it has"
                " a defined column ordering"
            )
        return self.columns[self.column_order[key_or_index]]

    def __len__(self) -> int:
        return len(self.columns)

    def to_pandas(self) -> Any:
        """Convert to a pandas DataFrame."""
        import pandas  # type: ignore  # pylint: disable=import-outside-toplevel

        df = pandas.DataFrame.from_dict(self.columns)
        if self.column_order is not None:
            df = df[list(self.column_order)]
        return df

    @classmethod
    def from_events(
        cls, events: Iterable[Event], columns: Optional[Sequence[str]] = None
    ) -> Columns:
        """Create a column-oriented copy of a sequence of events."""
        column_values: Dict[str, List[Any]] = {}
        index = 0
        for event in events:
            for key, value in event.items():
                # Get the column to append 'value' to
                key_column = column_values.get(key)
                if key_column is None:
                    if columns is not None and key not in columns:
                        continue  # An excluded column
                    key_column = []
                    column_values[key] = key_column

                # Pad to the current index
                if len(key_column) < index:
                    key_column += [None] * (index - len(key_column))

                key_column.append(value)
            index += 1

        # Make sure all the columns finish the same length
        for key, key_column in column_values.items():
            if len(key_column) < index:
                key_column += [None] * (index - len(key_column))

        return cls(
            {key: list_to_array(value) for key, value in column_values.items()},
            column_order=None if columns is None else tuple(columns),
        )


class Log:
    """A friendly API for manipulating a single log file.

    The analysis support here is quite basic, focussed around handling of ordered
    heterogenous events. We suggest performing further analysis and plotting using
    {pandas, numpy, scipy, matplotlib, seaborn, etc.}
    """

    def __init__(self, events: Iterable[Event]):
        self.events = events
        self.header = get_header(events)

    def __repr__(self) -> str:
        return f"{type(self).__name__}({_events_repr(self.events)})"

    def __getitem__(self, kind: str) -> Log:
        """Select events of a given kind from the log.

        Equivalent to `log.filter(kind)`.
        """
        if isinstance(kind, int):
            raise TypeError(
                "Cannot use a `Log` as an iterable - consider `Log.events` instead"
            )
        return self.filter(kind)

    @property
    def kinds(self) -> Set[Optional[str]]:
        """The set of {"kind": kind} from all events in the log."""
        return {typing.cast(Optional[str], event.get("kind")) for event in self.events}

    def cache(self) -> Log:
        """Create a log that is loaded into memory, for efficient multiple-traversal.

        Note that this does not change `self`, but returns a new cached Log.
        """
        if isinstance(self.events, (tuple, list)):
            return self
        return type(self)(tuple(self.events))

    def apply(self, *operations: ops.Operation) -> Log:
        """Create a transformed log view of this log.

        Note that the transformation will be executed whenever the log `events`
        are traversed.

        For example:

            log.apply(ops.count_if("step"))
        """
        return type(self)(Transform(self.events, ops.group(*operations)))

    def filter(self, predicate: ops.AutoPredicate) -> Log:
        """Create a filtered log view of this log."""
        return type(self)(Transform(self.events, ops.filter(predicate)))

    def to_columns(self, *columns: str) -> Columns:
        """Convert the log to a set of columns.

        If columns are specified, limit the output to these columns, with a
        defined order. Otherwise, the columns are autodetected from the log,
        and in unknown order.

        For example:

            step, loss = log["valid"].to_columns("step", "loss")
        """
        return Columns.from_events(self.events, columns if columns else None)

    def to_pandas(self, *columns: str) -> Any:
        """Convert the log to a pandas DataFrame.

        It's normally easiest to do this for a single event kind at a time.
        For example:

            dfv = log["valid"].to_pandas()
            dfs = log["step"].to_pandas()
        """
        return self.to_columns(*columns).to_pandas()


class LogSet:
    """A friendly "batched" API for manipulating a set of log files."""

    def __init__(self, logs: Sequence[Log]):
        self.logs = logs

    def __repr__(self) -> str:
        return f"{type(self).__name__}([{len(self.logs)}])"

    def __getitem__(self, kind_or_index: Union[str, int]) -> Union[LogSet, Log]:
        """Either filter log events (str) or index a single log (int)."""
        if isinstance(kind_or_index, str):
            return self.filter(kind_or_index)
        return self.logs[kind_or_index]

    def __len__(self) -> int:
        return len(self.logs)

    def __iter__(self) -> Iterator[Log]:
        return iter(self.logs)

    @property
    def events(self) -> Iterator[Event]:
        """A concatenated stream of all events from all logs."""
        for log in self.logs:
            yield from log.events

    @property
    def kinds(self) -> Set[Optional[str]]:
        """The set of all {"kind": kind} from all events in all logs."""
        return {kind for log in self.logs for kind in log.kinds}

    def cache(self) -> LogSet:
        """Create a log set that is loaded into memory, for efficient multiple-traversal.

        Note that this does not change `self`, but returns a new cached LogSet.
        """
        return type(self)(tuple(log.cache() for log in self.logs))

    def apply(self, *operations: ops.Operation) -> LogSet:
        """Create a (per-event) transformed view of this set of logs.

        For example:

            logs.apply(ops.header("id"), ops.count_if("step"))
        """
        return type(self)(tuple(log.apply(*operations) for log in self.logs))

    def filter(self, predicate: ops.AutoPredicate) -> LogSet:
        """Create a (per-event) filtered view of this set of logs.

        For example:

            logs.filter("valid")
        """
        return type(self)(tuple(log.filter(predicate) for log in self.logs))

    def to_columns(self, *columns: str) -> Columns:
        """Convert the logs to a set of columns.

        If columns are specified, limit the output to these columns, with a
        defined order. Otherwise, the columns are autodetected from the log,
        and in unknown order.
        """
        return Columns.from_events(self.events, columns if columns else None)

    def to_pandas(self, *columns: str) -> Any:
        """Convert the logs to a single pandas DataFrame.

        It's normally easiest to do this for a single event kind at a time.
        For example:

            logs["valid"].to_pandas()
        """
        return self.to_columns(*columns).to_pandas()


def open(  # pylint:disable=redefined-builtin
    path: str, load_args: Optional[Dict[str, Any]] = None
) -> Log:
    """Load a single Log from a local JSONLines file (e.g. written by logger.Log).

    For example:

        log = open("results/log.jsonl.gz")
    """
    return Log(JsonLinesFile(path, load_args=load_args))


def glob(pattern: str, recursive: bool = False) -> LogSet:
    """Load all logs matched by a local filesystem glob.

    For example:

        logs = glob("results/**/*.jsonl*", recursive=True)
    """
    return LogSet(tuple(open(f) for f in pyglob.glob(pattern, recursive=recursive)))

Functions

def get_header(events: Iterable[Event]) ‑> Union[Dict[str, Any], NoneType]

Extract the header from the event stream.

The header must be the first event, and have {"kind": "header"}.

Expand source code
def get_header(events: Iterable[Event]) -> Optional[Event]:
    """Extract the header from the event stream.

    The header must be the first event, and have {"kind": "header"}.
    """
    first = next(iter(events), None)
    if first is None:
        return None
    if first.get("kind") != "header":
        return None
    return first
def glob(pattern: str, recursive: bool = False) ‑> LogSet

Load all logs matched by a local filesystem glob.

For example:

logs = glob("results/**/*.jsonl*", recursive=True)
Expand source code
def glob(pattern: str, recursive: bool = False) -> LogSet:
    """Load all logs matched by a local filesystem glob.

    For example:

        logs = glob("results/**/*.jsonl*", recursive=True)
    """
    return LogSet(tuple(open(f) for f in pyglob.glob(pattern, recursive=recursive)))
def list_to_array(column: Sequence[Any]) ‑> Any

Convert a list to a numpy array, with a slight tweak to np.asarray.

The differences between this & np.asarray is the handling of None, and the ability to output multidimensional arrays.

list_to_array([1, None]) == np.array([1.0, np.nan])

list_to_array([[1], [2]])             == np.array([np.array([1]), np.array([2])], dtype=np.object)
Expand source code
def list_to_array(column: Sequence[Any]) -> Any:
    """Convert a list to a numpy array, with a slight tweak to np.asarray.

    The differences between this & np.asarray is the handling of None, and
    the ability to output multidimensional arrays.

        list_to_array([1, None]) == np.array([1.0, np.nan])

        list_to_array([[1], [2]]) \
            == np.array([np.array([1]), np.array([2])], dtype=np.object)
    """
    import numpy as np  # type: ignore  # pylint: disable=import-outside-toplevel

    types = {type(value) for value in column}

    if {np.ndarray, tuple, list} & types:
        # Deep structure - this could be a pain, so handle it separately.
        # We don't want to generate ND structures anyway, as pandas won't
        # handle these
        objarray = np.full(len(column), None)
        objarray[:] = column
        return objarray

    # Use dtype=np.float to convert None to np.nan as long as all types are
    # numeric
    dtype = None
    if type(None) in types and all(
        t is type(None) or np.dtype(t).kind in "biuf" for t in types  # noqa: E721
    ):
        dtype = np.float

    return np.asarray(column, dtype=dtype)
def open(path: str, load_args: Optional[Dict[str, Any]] = None) ‑> Log

Load a single Log from a local JSONLines file (e.g. written by logger.Log).

For example:

log = open("results/log.jsonl.gz")
Expand source code
def open(  # pylint:disable=redefined-builtin
    path: str, load_args: Optional[Dict[str, Any]] = None
) -> Log:
    """Load a single Log from a local JSONLines file (e.g. written by logger.Log).

    For example:

        log = open("results/log.jsonl.gz")
    """
    return Log(JsonLinesFile(path, load_args=load_args))

Classes

class Columns (columns: Dict[str, Any], column_order: Optional[Tuple[str, ...]])

A set of named columns, stored as arrays (requires numpy).

Expand source code
class Columns:
    """A set of named columns, stored as arrays (requires numpy)."""

    def __init__(
        self, columns: Dict[str, Any], column_order: Optional[Tuple[str, ...]]
    ):
        self.columns = columns
        self.column_order = column_order
        for name, column in columns.items():
            attrname = f"{name}_" if hasattr(self, name) else name
            setattr(self, attrname, column)

    def __repr__(self) -> str:
        if self.column_order is not None:
            return f"{type(self).__name__}{self.column_order!r}"
        return f"{type(self).__name__}{tuple(self.columns)!r}"

    def __getitem__(self, key_or_index: Union[str, int]) -> Any:
        if isinstance(key_or_index, str):
            return self.columns[key_or_index]
        if self.column_order is None:
            raise ValueError(
                "Cannot use Columns as an indexable sequence unless it has"
                " a defined column ordering"
            )
        return self.columns[self.column_order[key_or_index]]

    def __len__(self) -> int:
        return len(self.columns)

    def to_pandas(self) -> Any:
        """Convert to a pandas DataFrame."""
        import pandas  # type: ignore  # pylint: disable=import-outside-toplevel

        df = pandas.DataFrame.from_dict(self.columns)
        if self.column_order is not None:
            df = df[list(self.column_order)]
        return df

    @classmethod
    def from_events(
        cls, events: Iterable[Event], columns: Optional[Sequence[str]] = None
    ) -> Columns:
        """Create a column-oriented copy of a sequence of events."""
        column_values: Dict[str, List[Any]] = {}
        index = 0
        for event in events:
            for key, value in event.items():
                # Get the column to append 'value' to
                key_column = column_values.get(key)
                if key_column is None:
                    if columns is not None and key not in columns:
                        continue  # An excluded column
                    key_column = []
                    column_values[key] = key_column

                # Pad to the current index
                if len(key_column) < index:
                    key_column += [None] * (index - len(key_column))

                key_column.append(value)
            index += 1

        # Make sure all the columns finish the same length
        for key, key_column in column_values.items():
            if len(key_column) < index:
                key_column += [None] * (index - len(key_column))

        return cls(
            {key: list_to_array(value) for key, value in column_values.items()},
            column_order=None if columns is None else tuple(columns),
        )

Static methods

def from_events(events: Iterable[Event], columns: Optional[Sequence[str]] = None) ‑> Columns

Create a column-oriented copy of a sequence of events.

Expand source code
@classmethod
def from_events(
    cls, events: Iterable[Event], columns: Optional[Sequence[str]] = None
) -> Columns:
    """Create a column-oriented copy of a sequence of events."""
    column_values: Dict[str, List[Any]] = {}
    index = 0
    for event in events:
        for key, value in event.items():
            # Get the column to append 'value' to
            key_column = column_values.get(key)
            if key_column is None:
                if columns is not None and key not in columns:
                    continue  # An excluded column
                key_column = []
                column_values[key] = key_column

            # Pad to the current index
            if len(key_column) < index:
                key_column += [None] * (index - len(key_column))

            key_column.append(value)
        index += 1

    # Make sure all the columns finish the same length
    for key, key_column in column_values.items():
        if len(key_column) < index:
            key_column += [None] * (index - len(key_column))

    return cls(
        {key: list_to_array(value) for key, value in column_values.items()},
        column_order=None if columns is None else tuple(columns),
    )

Methods

def to_pandas(self) ‑> Any

Convert to a pandas DataFrame.

Expand source code
def to_pandas(self) -> Any:
    """Convert to a pandas DataFrame."""
    import pandas  # type: ignore  # pylint: disable=import-outside-toplevel

    df = pandas.DataFrame.from_dict(self.columns)
    if self.column_order is not None:
        df = df[list(self.column_order)]
    return df
class JsonLinesFile (path: str, load_args: Optional[Dict[str, Any]] = None)

An event stream that is lazily read from a JSONlines file.

Note that if the first event in the file has {"kind": "header"}, this class automatically adds a key {"metadata": {"path": …, "created": …, "modified": …}}.

Expand source code
class JsonLinesFile:
    """An event stream that is lazily read from a JSONlines file.

    Note that if the first event in the file has {"kind": "header"}, this class
    automatically adds a key {"metadata": {"path": ..., "created": ...,
    "modified": ...}}.
    """

    def __init__(self, path: str, load_args: Optional[Dict[str, Any]] = None):
        self.path = path
        self.load_args = load_args

    def __repr__(self) -> str:
        return f"{type(self).__name__}({self.path!r})"

    def __iter__(self) -> Iterator[Event]:
        iterator: Iterator[Event] = iter(io.read_jsonlines(self.path, self.load_args))
        try:
            first_event = next(iterator)
            if first_event.get("kind") == "header":
                first_event["metadata"] = self.metadata
            yield first_event
            yield from iterator
        except StopIteration:
            pass

    @property
    def metadata(self) -> Dict[str, Any]:
        """A dictionary of metadata about the file loaded."""
        return dict(
            path=self.path,
            created=datetime.datetime.fromtimestamp(
                os.path.getctime(self.path)
            ).isoformat(),
            modified=datetime.datetime.fromtimestamp(
                os.path.getmtime(self.path)
            ).isoformat(),
        )

Instance variables

var metadata : Dict[str, Any]

A dictionary of metadata about the file loaded.

Expand source code
@property
def metadata(self) -> Dict[str, Any]:
    """A dictionary of metadata about the file loaded."""
    return dict(
        path=self.path,
        created=datetime.datetime.fromtimestamp(
            os.path.getctime(self.path)
        ).isoformat(),
        modified=datetime.datetime.fromtimestamp(
            os.path.getmtime(self.path)
        ).isoformat(),
    )
class Log (events: Iterable[Event])

A friendly API for manipulating a single log file.

The analysis support here is quite basic, focussed around handling of ordered heterogenous events. We suggest performing further analysis and plotting using

Expand source code
class Log:
    """A friendly API for manipulating a single log file.

    The analysis support here is quite basic, focussed around handling of ordered
    heterogenous events. We suggest performing further analysis and plotting using
    {pandas, numpy, scipy, matplotlib, seaborn, etc.}
    """

    def __init__(self, events: Iterable[Event]):
        self.events = events
        self.header = get_header(events)

    def __repr__(self) -> str:
        return f"{type(self).__name__}({_events_repr(self.events)})"

    def __getitem__(self, kind: str) -> Log:
        """Select events of a given kind from the log.

        Equivalent to `log.filter(kind)`.
        """
        if isinstance(kind, int):
            raise TypeError(
                "Cannot use a `Log` as an iterable - consider `Log.events` instead"
            )
        return self.filter(kind)

    @property
    def kinds(self) -> Set[Optional[str]]:
        """The set of {"kind": kind} from all events in the log."""
        return {typing.cast(Optional[str], event.get("kind")) for event in self.events}

    def cache(self) -> Log:
        """Create a log that is loaded into memory, for efficient multiple-traversal.

        Note that this does not change `self`, but returns a new cached Log.
        """
        if isinstance(self.events, (tuple, list)):
            return self
        return type(self)(tuple(self.events))

    def apply(self, *operations: ops.Operation) -> Log:
        """Create a transformed log view of this log.

        Note that the transformation will be executed whenever the log `events`
        are traversed.

        For example:

            log.apply(ops.count_if("step"))
        """
        return type(self)(Transform(self.events, ops.group(*operations)))

    def filter(self, predicate: ops.AutoPredicate) -> Log:
        """Create a filtered log view of this log."""
        return type(self)(Transform(self.events, ops.filter(predicate)))

    def to_columns(self, *columns: str) -> Columns:
        """Convert the log to a set of columns.

        If columns are specified, limit the output to these columns, with a
        defined order. Otherwise, the columns are autodetected from the log,
        and in unknown order.

        For example:

            step, loss = log["valid"].to_columns("step", "loss")
        """
        return Columns.from_events(self.events, columns if columns else None)

    def to_pandas(self, *columns: str) -> Any:
        """Convert the log to a pandas DataFrame.

        It's normally easiest to do this for a single event kind at a time.
        For example:

            dfv = log["valid"].to_pandas()
            dfs = log["step"].to_pandas()
        """
        return self.to_columns(*columns).to_pandas()

Instance variables

var kinds : Set[Union[str, NoneType]]

The set of {"kind": kind} from all events in the log.

Expand source code
@property
def kinds(self) -> Set[Optional[str]]:
    """The set of {"kind": kind} from all events in the log."""
    return {typing.cast(Optional[str], event.get("kind")) for event in self.events}

Methods

def apply(self, *operations: ops.Operation) ‑> Log

Create a transformed log view of this log.

Note that the transformation will be executed whenever the log events are traversed.

For example:

log.apply(ops.count_if("step"))
Expand source code
def apply(self, *operations: ops.Operation) -> Log:
    """Create a transformed log view of this log.

    Note that the transformation will be executed whenever the log `events`
    are traversed.

    For example:

        log.apply(ops.count_if("step"))
    """
    return type(self)(Transform(self.events, ops.group(*operations)))
def cache(self) ‑> Log

Create a log that is loaded into memory, for efficient multiple-traversal.

Note that this does not change self, but returns a new cached Log.

Expand source code
def cache(self) -> Log:
    """Create a log that is loaded into memory, for efficient multiple-traversal.

    Note that this does not change `self`, but returns a new cached Log.
    """
    if isinstance(self.events, (tuple, list)):
        return self
    return type(self)(tuple(self.events))
def filter(self, predicate: ops.AutoPredicate) ‑> Log

Create a filtered log view of this log.

Expand source code
def filter(self, predicate: ops.AutoPredicate) -> Log:
    """Create a filtered log view of this log."""
    return type(self)(Transform(self.events, ops.filter(predicate)))
def to_columns(self, *columns: str) ‑> Columns

Convert the log to a set of columns.

If columns are specified, limit the output to these columns, with a defined order. Otherwise, the columns are autodetected from the log, and in unknown order.

For example:

step, loss = log["valid"].to_columns("step", "loss")
Expand source code
def to_columns(self, *columns: str) -> Columns:
    """Convert the log to a set of columns.

    If columns are specified, limit the output to these columns, with a
    defined order. Otherwise, the columns are autodetected from the log,
    and in unknown order.

    For example:

        step, loss = log["valid"].to_columns("step", "loss")
    """
    return Columns.from_events(self.events, columns if columns else None)
def to_pandas(self, *columns: str) ‑> Any

Convert the log to a pandas DataFrame.

It's normally easiest to do this for a single event kind at a time. For example:

dfv = log["valid"].to_pandas()
dfs = log["step"].to_pandas()
Expand source code
def to_pandas(self, *columns: str) -> Any:
    """Convert the log to a pandas DataFrame.

    It's normally easiest to do this for a single event kind at a time.
    For example:

        dfv = log["valid"].to_pandas()
        dfs = log["step"].to_pandas()
    """
    return self.to_columns(*columns).to_pandas()
class LogSet (logs: Sequence[Log])

A friendly "batched" API for manipulating a set of log files.

Expand source code
class LogSet:
    """A friendly "batched" API for manipulating a set of log files."""

    def __init__(self, logs: Sequence[Log]):
        self.logs = logs

    def __repr__(self) -> str:
        return f"{type(self).__name__}([{len(self.logs)}])"

    def __getitem__(self, kind_or_index: Union[str, int]) -> Union[LogSet, Log]:
        """Either filter log events (str) or index a single log (int)."""
        if isinstance(kind_or_index, str):
            return self.filter(kind_or_index)
        return self.logs[kind_or_index]

    def __len__(self) -> int:
        return len(self.logs)

    def __iter__(self) -> Iterator[Log]:
        return iter(self.logs)

    @property
    def events(self) -> Iterator[Event]:
        """A concatenated stream of all events from all logs."""
        for log in self.logs:
            yield from log.events

    @property
    def kinds(self) -> Set[Optional[str]]:
        """The set of all {"kind": kind} from all events in all logs."""
        return {kind for log in self.logs for kind in log.kinds}

    def cache(self) -> LogSet:
        """Create a log set that is loaded into memory, for efficient multiple-traversal.

        Note that this does not change `self`, but returns a new cached LogSet.
        """
        return type(self)(tuple(log.cache() for log in self.logs))

    def apply(self, *operations: ops.Operation) -> LogSet:
        """Create a (per-event) transformed view of this set of logs.

        For example:

            logs.apply(ops.header("id"), ops.count_if("step"))
        """
        return type(self)(tuple(log.apply(*operations) for log in self.logs))

    def filter(self, predicate: ops.AutoPredicate) -> LogSet:
        """Create a (per-event) filtered view of this set of logs.

        For example:

            logs.filter("valid")
        """
        return type(self)(tuple(log.filter(predicate) for log in self.logs))

    def to_columns(self, *columns: str) -> Columns:
        """Convert the logs to a set of columns.

        If columns are specified, limit the output to these columns, with a
        defined order. Otherwise, the columns are autodetected from the log,
        and in unknown order.
        """
        return Columns.from_events(self.events, columns if columns else None)

    def to_pandas(self, *columns: str) -> Any:
        """Convert the logs to a single pandas DataFrame.

        It's normally easiest to do this for a single event kind at a time.
        For example:

            logs["valid"].to_pandas()
        """
        return self.to_columns(*columns).to_pandas()

Instance variables

var events : Iterator[Dict[str, Any]]

A concatenated stream of all events from all logs.

Expand source code
@property
def events(self) -> Iterator[Event]:
    """A concatenated stream of all events from all logs."""
    for log in self.logs:
        yield from log.events
var kinds : Set[Union[str, NoneType]]

The set of all {"kind": kind} from all events in all logs.

Expand source code
@property
def kinds(self) -> Set[Optional[str]]:
    """The set of all {"kind": kind} from all events in all logs."""
    return {kind for log in self.logs for kind in log.kinds}

Methods

def apply(self, *operations: ops.Operation) ‑> LogSet

Create a (per-event) transformed view of this set of logs.

For example:

logs.apply(ops.header("id"), ops.count_if("step"))
Expand source code
def apply(self, *operations: ops.Operation) -> LogSet:
    """Create a (per-event) transformed view of this set of logs.

    For example:

        logs.apply(ops.header("id"), ops.count_if("step"))
    """
    return type(self)(tuple(log.apply(*operations) for log in self.logs))
def cache(self) ‑> LogSet

Create a log set that is loaded into memory, for efficient multiple-traversal.

Note that this does not change self, but returns a new cached LogSet.

Expand source code
def cache(self) -> LogSet:
    """Create a log set that is loaded into memory, for efficient multiple-traversal.

    Note that this does not change `self`, but returns a new cached LogSet.
    """
    return type(self)(tuple(log.cache() for log in self.logs))
def filter(self, predicate: ops.AutoPredicate) ‑> LogSet

Create a (per-event) filtered view of this set of logs.

For example:

logs.filter("valid")
Expand source code
def filter(self, predicate: ops.AutoPredicate) -> LogSet:
    """Create a (per-event) filtered view of this set of logs.

    For example:

        logs.filter("valid")
    """
    return type(self)(tuple(log.filter(predicate) for log in self.logs))
def to_columns(self, *columns: str) ‑> Columns

Convert the logs to a set of columns.

If columns are specified, limit the output to these columns, with a defined order. Otherwise, the columns are autodetected from the log, and in unknown order.

Expand source code
def to_columns(self, *columns: str) -> Columns:
    """Convert the logs to a set of columns.

    If columns are specified, limit the output to these columns, with a
    defined order. Otherwise, the columns are autodetected from the log,
    and in unknown order.
    """
    return Columns.from_events(self.events, columns if columns else None)
def to_pandas(self, *columns: str) ‑> Any

Convert the logs to a single pandas DataFrame.

It's normally easiest to do this for a single event kind at a time. For example:

logs["valid"].to_pandas()
Expand source code
def to_pandas(self, *columns: str) -> Any:
    """Convert the logs to a single pandas DataFrame.

    It's normally easiest to do this for a single event kind at a time.
    For example:

        logs["valid"].to_pandas()
    """
    return self.to_columns(*columns).to_pandas()
class Transform (events: Iterable[Event], operation: ops.BaseOperation)

An event stream produced by transforming another stream.

If we compare two alternatives:

operation(events)
Transform(events, operation)

The main difference is that the second can be iterated multiple times (as long as events can.)

Expand source code
class Transform:
    """An event stream produced by transforming another stream.

    If we compare two alternatives:

        operation(events)
        Transform(events, operation)

    The main difference is that the second can be iterated multiple times (as long
    as `events` can.)
    """

    def __init__(self, events: Iterable[Event], operation: ops.BaseOperation):
        self.events = events
        self.operation = operation

    def __repr__(self) -> str:
        return f"{type(self).__name__}({_events_repr(self.events)}, {self.operation!r})"

    def __iter__(self) -> Iterator[Event]:
        return self.operation(iter(self.events))